If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+6y-4=0
a = 5; b = 6; c = -4;
Δ = b2-4ac
Δ = 62-4·5·(-4)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{29}}{2*5}=\frac{-6-2\sqrt{29}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{29}}{2*5}=\frac{-6+2\sqrt{29}}{10} $
| 180+55=x | | 55+55=x | | 0.28x=0.28 | | 2(2x+4)-5=3 | | 3(6y+7)=24 | | 3(6y+7)=21 | | X^3+8x-20=0 | | 8(7y+3)=34 | | 2(5y+6)=24 | | 2(5y+6)=10 | | 3(5y+8)=50 | | -20x+5000=10x+800 | | 3(8x+9)=-12 | | (7x)^2-10x+14=0 | | 8+x-5=20 | | 2x-1/4=3x+5/9 | | 0.42^x=3 | | 45*16=10q | | 216*2=9k | | 211-43=28m | | x^2-15=50 | | 2(3w+7)=26(w=2) | | 2(3w+7)=(w+2) | | -x^2+69x-1080=0 | | 23=3+4x= | | 800c-20c=1440 | | 3(3y+8)=50 | | X2=2x-3 | | 2.8y=5+y | | 3x+5=2-(6x+1) | | 4=3*3+b | | 4=33+b |